SUBSTITUENTS EFFECT ON THE CLAISEN REARRANGEMENT

Giovanni Desimoni, Giuseppe Faita, Anna Gamba, Pier Paolo Righetti,*

Gianfranco Tacconi and Lucio Toma

Dipartimento di Chimica Organica, Viale Taramelli, 10, 27100 Pavia (Italy)

(Received in UK 4 December 1989)

Abstract. The Claisen rearrangement of six homogeneous series of (R,S) or (R,R)1,4-diaryl-6-isopropenyl-6-methyl-5,6-dihydro-4H-pyran[2,3-c]pyrazoles (1-6) to give 1,2-dimethyl-5-arylcyclohexene-4-spiro-4'(1'-aryl-5'-pyrazolones) (7-12) was kinetically investigated at 125 °C in C D. When the substituents are on the 1-aryl group (1,2) the rate increased with increases in the electron-attracting character of the substituent. When the substituents are on the 4-aryl group and the configuration is (R,S) (3,5), the rate decreased with increases in the electron-attracting character of the substituent. If the configuration is (R,R) (4,6) a lower, opposite, effect was observed. All kinetic data correlate linearly with the ϱ of the substituents. These results can be rationalized by assuming for the Claisen rearrangement a transition state having significant dipolar character, with a partial negative charge developed on the oxygenated fragment.

Even if the Claisen rearrangement is one of the best synthetic tools in carbon-carbon forming for its simplicity and selectivity,¹ some aspect of the mechanism are still argument of a serious debate. Even if a strong support for a transition state (t.s.) having significant dipolar character came from the solvent effect observed in the kinetic study of the rearrangemenet,²⁻⁵ only few homogeneous series of substituted allyl vinyl ethers were kinetically investigated: all cyano-substituted derivatives,⁶ and 4-, 5- and 6-methoxy-substituted compounds.³

From these kinetic data,^{3,6} from the secondary deuterium isotope effect⁷ and from both $MNDO^{8a}$ and $AM1^{8b}$ studies of the rearrangement, four different models of the Claisen transition state have been derived.

a) Dewar proposed a t.s., early described^{8a} as a biradicaloid that resembles 2-oxacyclohexane-1,4-diyl with substituents favouring a polarization in the sense of a positive charge delocalized on both oxygen and the adjacent carbon atom, and later described^{8b} as a species having intermediate character between aromatic and biradicaloid.
b) Gajewsky and Conrad⁷ proposed an early t.s. which resembles two allyl radicals.

c) Burrows and Carpenter, 6,9 a delocalized t.s. with the phenyl anion as model.

d) Finally Coates, Curran and co-workers³ and the Cornell group⁴ proposed a pericyclic t.s. with pronounced dipolar character, the negative charge being delocalized on the oxygenated fragment. A similar t.s. can rationalize the substituent effect shown by the rearrangement of substituted cinnamylphenyl ethers.^{10,11}

paper¹² reported In previous we the results of the reaction between 1-phenyl-4-arylidene-5-pyrazolones and 2,3-dimethylbutadiene. Depending upon substituents and experimental conditions, one or both heterodienic adducts (4R,6S)¹³ and (4R,6R) 1,4-diaryl-6-isopropenyl-6-methyldihydropyran [2,3-c] pyrazoles (1,3,5 and 2,4,6 respectively) were obtained together with one or both Diels-Alder products (4S,5R) and (4R,5R) 1,2-dimethyl-5-arylcyclohexene-4-spiro-4'(1'-aryl-5'-pyrazolones) (7,9,11 and 8,10,12 respectively). When the former ones are heated at temperatures above 100 °C, they rearrange stereospecifically to the latter ones (Scheme 1).

Hence, a cleavage of the 07-C6 bond to form a dipolar intermediate was ruled out, as well as a cycloreversion (followed by recombination of arylidene-pyrazolones and dimethylbutadiene); moreover, in the presence of ethyl vinyl ether as solvent, no trace of adduct of arylidene-pyrazolone with this, which is more reactive than 2,3-dimethylbutadiene, was observed. Thus the rearrangement of isopropyliden-dihydropyrans **1-6** to cyclohexene-spiropyrazolones **7-12** is a Claisen [3.3]-sigmatropic shift.

RESULTS

These rearrangements seemed suitable models to test the substituents effect on the reaction rate in a case in which they necessarily take place trough the normally less favoured boat t.s. Thus we synthesized (using our best experimental conditions to obtain them)¹² six homogeneous series (1-6; Scheme 2) with different (R,S) or (R,R) configurations,¹⁴ different substituents in position 3, but, mainly, with comprehensive series of substituents in the phenyl groups either in position 1 or in position 4.

All kinetics runs were studied in C_{66}^{D} as solvent, in sealed tubes at 125°C, and followed to about 80% completion by ¹H-NMR spectroscopic analysis of the disappearing dihydropyran[2,3-c]pyrazoles 1-6 versus the increasing cyclohexene-spiro-pyrazolones 7-12 (see Experimental for details).

All reactions were found to follow a first order kinetic and the rate constants reported in tables 1-3 are the average of at least three kinetic runs. Only for **4a-e**, that are difficult to isolate as pure products in reasonable amounts, the k values are the average of two kinetic runs.

When the substituents are on the aryl group in position 1 (1, 2a-f; Table 1) the rate increased with increases in the electron-attracting character of the substituent. If log k values are plotted <u>vs</u> the σ_p constants of the substituent X, two linear relationships are obtained, either for (R,S) (1a-f) or for (R,R) (2a-f) isomers, (Fig. 1a) and their ϱ values are nearly equal (0.55, r = 0.998 and 0.60, r = 0.995, respectively).

When the substituents are on the aryl group in position 4, a different behaviour is observed for (R,S) and (R,R) isomers (3,5 and 4,6, respectively; Tables 2 and 3).

In the former series the rate decreased with increases in the electron-attracting character of the Y substituent. Again if log k values are plotted <u>vs</u> the σ_p constants, two linear relationships are obtained, either for the 3-H-substituted series (**3a-g**) or for the 3-Me-substituted one (**5a-f** and **1d**), whose ϱ values are nearly equal: -0.27, r = 0.990 and -0.29, r=0.970 respectively (Fig. 1b).

In both (R,R) series the behaviour is opposite (even if the effect is small) and a clear trend, indicating that the rate increased with increases in the electron-attracting character of the substituent, is observed. If log k values are plotted vs the σ_p constants,

Scheme 2

1a	:	R	=	Me;	Y	=	Н; Х	=	NO	2a : R = Me; Y = H; X =	NO
1b	:		~	Me;		=	H;	=	Br	2b : = Me; = H; =	Br
1c	:		=	Me;		=	H;	=	C1	2c : = Me; = H; =	C1
1d	:		=	Me;		=	H;	=	Н	2d : = Me; = H; =	Н
1e	:		=	Me;		=	Н;	=	Me	2e : = Me; = H; =	Me
1f	:		=	Me;		Ħ	H;	=	OMe	2f : = Me; = H; =	OMe
3a	:	R	=	H;	Y	=	NO,;	Х	= H	4a : $R = H$; $Y = NO_{2}$; X	≠ H
3b	:		=	Н;		=	CN;		= H	4b := H; = CN;	= H
3c	:		=	H;		=	Cl;		= H	4c := H; = C1;	= H
3đ	:		=	н;		=	F;		≃ H	4d : = H; = F;	≠ H
3e	:		=	H;		=	H;		= H	4e : = H; = H;	= H
3f	:		=	H;		-	Me;		= H		
Зg	:		=	Н;		=	OMe;		= H		
5a	:	R	=	Me;	Y	=	N0,;	Х	= H	6a : $R = Me; Y = NO_2; X$	= H
5b	:		=	Me;		=	CN;		= H	6b := Me; = CN;	= H
5c	:		=	Me;		~	CL;		= H	6c : = Me; = C1;	= H
5d	:		=	Me;		=	F;		= H	6d : = Me; = F;	= H
5e	:		=	Me;		-	Me;		≂ H	6e : = Me; = Me;	= H
5f	:		=	Me;		=	OMe;		= H	6f : = Me; = OMe;	= H

again two fairly good linear relationships are obtained, either for the 3-H-substituted series (4a-e) or for the 3-Me-substituted one (6a-f and 2d), whose ϱ values are nearly equal: 0.15, r = 0.97 and 0.13, r = 0.96 respectively (Fig. 2).

DISCUSSION

We will discuss first the effect of the substituents on the aryl group in position 1. To convert dihydropyrans 1 and 2 into spiro-cyclohexenes 7 and 8, the molecular

Substituents effect on the Claisen rearrangement

Substituents	1	2
Substituents	$10^5 \mathrm{x \ k \ (s^{-1})}$	$10^5 \text{ x k } (\text{s}^{-1})$
a : $X = NO_2$	9.75 ± 0.3	4.96 + 0.09
b: = Br	4.87 ± 0.09	2.10 + 0.02
c : = Cl	4.87 <u>+</u> 0.05	2.18 + 0.03
d : = H	3.42 ± 0.04	1.51 + 0.08
e: = Me	2.92 ± 0.08	1.38 + 0.01
f: = OMe	2.62 ± 0.02	1.13 + 0.04

Table 1. Rate constants for the Claisen rearrangement of 1,2a-f at 125°C in C D 66

Table 2. Rate constants for the Claisen rearrangement of 3a-g and 4a-d at 125°C in C D 66

Substituents	3	4
	$10^5 \text{ x k } (\text{s}^{-1})$	$10^5 \text{ k k } (\text{s}^{-1})$
a : $Y = NO_2$	11.6 ± 0.2	1.28 + 0.02
b : = CN	12.1 ± 0.5	1.15 + 0.02
c : = Cl	15.3 ± 0.5	0.98 + 0.04
d : = F	17.0 ± 0.5	0.97 + 0.05
e : = H	19.3 ± 0.6	0.96 + 0.09
f: = Me	21.0 ± 0.9	-
g: = OMe	21.6 ± 0.8	-

Table 3. Rate constants for the Claisen rearrangement of **5,6a-f** at 125°C in C D 66

Substituents	5	6		
Substituents	$10^5 \text{ x k } (\text{s}^{-1})$	$10^5 \text{x k (s}^{-1})$		
a : $Y = NO_2$	1.81 ± 0.02	2.01 + 0.05		
b : = CN	2.21 ± 0.02	1.95 + 0.10		
\mathbf{c} : = CN	2.61 ± 0.02	1.65 + 0.10		
d: = F	2.99 ± 0.03	1.6 + 0.1		
$= H^{a}$	3.42 ± 0.04^{a}	$1.51 + 0.08^{a}$		
e: = Me	3.78 ± 0.05	1.60 + 0.05		
f: = OMe	3.59 ± 0.04	1.45 + 0.10		

a) the series are completed with data of $\mathbf{1d}$ and $\mathbf{2d}$

Figure 1. (a) - Rate constants of the Claisen rearrangement of la-f (○) and 2a-f (□) at 125°C in C₆D₆, plotted <u>vs</u>. the σp constant of the substituents.
(b) - Rate constants of the Claisen rearrangement of 3a-g (△), 4a-e (★), 5a-f (○) and 6a-f (□) (data of 1d and 2d are added to last two series respectively) at 125°C in C₆D₆, plotted <u>vs</u> the σp constant of the substituents.

framework involved requires a conformation with the isopropenyl group in an axial position to allow overlap between its π -orbital and that of the carbon atom in position 3a (Scheme 3).

From the NMR spectra of 1a-f and 2a-f, both series prefer conformations with the 4-phenyl group in a "pseudo-equatorial" position (the H-4 proton has a signal consistent for an axial-axial and an axial-equatorial coupling). Hence, the dihydropyran fragment of 2a-f will adopt a half-chair conformation with the isopropenyl group in the required axial position. But 1 rearranges at a rate that is about twice faster than 2. Thus we believe that also the isopropenyl group of 1a-f should easily assume an axial position, and this occurs if the half-chair conformation with the isopropenyl group in the axial orientation is enough populated. In order to evaluate this possibility, MM2 calculations¹⁵ were performed on 1d and 2d. The latter one showed a marked preference for conformation C (Scheme 3), the steric energy of conformation D was in fact 3.4 kcal/mole higher than that of C.

On the contrary 1d did not show a defined conformational preference, having the conformations A and B almost at the same steric energy (B was favoured over A by 0.1 kcal/mole). This result contrast with the NMR data that show a preference for an equatorial orientation of the 4-phenyl group. This discrepancy may be explained with the entropic contribution, not taken into account by MM2, that largely disfavours a diaxial orientation of both the phenyl and the isopropenyl group, owing to the severe limitations in their rotation.¹⁶ As a consequence of this effect B becomes less populated than A; however, the non negligible amount of B existing in solution is the reactive conformation.

The effect of substituent X, that increases the reaction rate with the increase of its

G. DESIMONI et al.

electron-attracting character, can be rationalized by assuming the development of a negative charge on the oxygenated fragment in the t.s. (scheme 3). Hence these results strongly support the "Coates and Curran model" of the Claisen t.s.³

The effect of the substituents Y on the aryl group in position 4 will now be discussed.

Figure 1b shows that the rate of the rearrangement increased with the increase of the electron-releasing effect of the substituent Y in both (R,S) series 3 and 5. An opposite (but significantly lower) effect is observed in both (R,R) series 4 and 6. Again this can be regarded as a clear evidence in favour of the "Coates and Curran model".³

The t.s. involved in the conversion of both (R,S) series **3** and **5** (Scheme 3) has the Y-substituted phenyl ring overlapping the positively polarized fragment. Thus electron-releasing substituents will stabilize the positive charge either by a through-space "donor-acceptor" interaction or by a favourable electrostatic effect. The opposite interaction, involving the negatively polarized fragment and the overlapping (but somewhat twisted, if the more stable conformation¹⁸ of the starting product is retained in the t.s) aryl group, rationalizes the opposite (but weakened) behaviour of both (R,R) series **4** and **6**.

Finally the relative rates of 3 <u>vs</u>. 5 and 4 <u>vs</u>. 6 can be rationalized as follows. Going from 3 and 5 to their t.s.s, as the orbital of the terminal olefinic carbon of the isopropenyl group overlaps the orbital of C-3a, the aryl group in position 4 moves to increase its steric interaction with R (Scheme 4). Thus the rate of 3 (R=H) is expected to be greater than that of 5 (R = Me).¹⁹

On the contrary, when 4 and 6 moove to their t.s.s, as the isopropenyl group overlaps C-3a, a relief of the steric hindrance between the aryl group in 4 and R occurs (Scheme 4). Thus the rate of 4 (R=H) is expected to be smaller than that of 6 (R=Me).¹⁹

In conclusion, the rate of the Claisen rearrangement seems to be a function of both the stabilization of the charges developed in the t.s. and of the steric crowding of this.

Scheme 4

3,5

2172

EXPERIMENTAL

Melting points, uncorrected, were determined by the capillary method on a Tottoli apparatus. Elemental analyses were made on Erba CHN analyzer mod. 1106. IR Spectra (nujol mulls) were recorded on a Perkin-Elmer 983 spectrophotometer; 1 H-NMR spectra on a Bruker WP80 SY spectrometer (chemical shifts in ppm on the scale, coupling constants in Hz).

1-Phenyl-4-aryliden-5-pyrazolones. Prepared in accord with the literature method. 20,21

<u>1-Phenyl-3-methyl-4-aryliden-5-pyrazolones</u>. Prepared in accord with the literature method. $\frac{20}{20}$

<u>1-Aryl-4-bezyliden-3-methyl-5-pyrazolones</u>. Prepared in accord with the literature method.²²⁻²⁵ Analogously 1-p.tolyl-3-methyl-4-benzyliden-5-pyrazolone was prepared from benzaldehyde and 1-p.tolyl-3-methyl-5-pyrazolone as red needles (55%), m.p. 101-102 °C (EtOH) (Found: C, 78.4; H, 5.7; N, 10.1%. Calc. for C $_{18}^{H}_{16}^{h}_{16}^{O}_{2}$: C, 78.2, H, 5.8; N, 10.1%).

<u>Preparations of compounds 1-6</u>. These products were prepared from the CF₃COOH catalyzed reaction of 1-aryl-4-aryliden-5-pyrazolones and 2,3-dimethylbutadiene following the procedure described in ref. 12. The operations required to separate these adducts are reported hereto.

a) From 3-H pyrazolones the spent reaction mixture was column chromatographed (Silic agel Merck 230-400 mesh, eluant methylene chloride) and pure **9a-g** was obtained as first fraction. The second fraction (**3a-g** and **4a-g** in admixture) was submitted to medium pressure liquid chromatography (Miniprep Jovin Yvon, Silica gel Merck 0.063 mm., eluant cyclohexane ethyl acetate 98:2) and pure **4a-g** and **3a-g** were obtained in the order.

b) From 3-Me pyrazolones the spent reaction mixture was column chromatographed (Silica gel Merck 230-400 mesh, eluant methylene chloride) and the dienic cycloadducts (7 and 8 or 11 and 12 in admixture) were obtained as first fraction and the heterodienic ones (1 and 2 or 5 and 6 in admixture) as the second fraction. These latter mixtures were submitted to medium pressure liquid chromatography (same conditions as in a) and pure 2a-f and 1a-f (respectively 6a-f and 5a-f) were obtained in the order. The physical characteristics and the NMR spectra of compounds 1-6 not previously described, are reported in tables 4 and 5.

<u>3.3</u> Signatropic rearrangement of 1-6 to 7-12. General procedure. A mixture of 0.5 mmoles of 1-6 (0.05 mmoles for 4a-e) and 5 mL. of dry benzene was heated on an oil bath at 125 °C in a sealed tube until the starting product completely disappeared (TLC, CH₂Cl₂ as eluant). After evaporation of the solvent, the corresponding 7-12 isomers were isolated in nearly quantitative yield. The physical characteristics and the NMR spectra of compounds 7-12, not previously described, ¹² are reported in tables 6 and 7.

<u>Kinetics</u>. A 0.1 molar $C_{0,0}^{D}$ solution of the required dihydropyran (1-6) in a sealed NMR tube, was placed at time zero in an oil ultrathermostat at 125±0.2 °C. At appropriate time intervals (from 30 minutes to 5 hours depending on the rate of the rearrangement) the tube was quickly cooled at room temperature and the ¹H-NMR was registered on a Bruker WP80 SY spectrometer. The relative concentrations of [7-12] versus [1-6] were determined from the integrals ratios of the H-5 benzylic proton of the developing product versus the H-4 benzylic proton of the disappearing starting material. These values were checked by measuring the ratio of the H-5 integral <u>vs</u> the integral of each of the two vinylic protons of (1-6). The riproducibility of the values was in the range <u>±</u> 3%. Each kinetic determination consisted of at least six measures in the range 15-80% conversion, and the rate constants are the average of at least three kinetic runs (two for **4a-c**).

G. DESIMONI et al.

		Table 4. Phys	sical data of comp	ounds 1-6		
Compd	Yield	M.p. (solv.)		Elemental	analyses	
1a	15	149-151° (a)	for C ₂₃ H ₂₃ N ₃ O ₃	calc.: found:	C, 70.9; H, 71.1:	5.9; N, 10.8% 6.0 10.9
2a	23	162-163° (a)		found:	70.7;	5.9; 10.7
1b	20	156-157° (b)	for C ₂₃ ^H BrN ₂) calc.: found:	C, 65.2; H, 65.4;	5.5.; N, 6.6% 5.3; 6.5
2Ъ	32	129-130° (b)		found:	65.5;	5.6; 6.6
5b	23	161-162° (c)	for $C_{24}H_{23}N_{3}O$	calc.: found:	С, 78.0; H, 77.7;	6.3; N, 11.4% 6.2; 11.3
6b	35	171-172° (c)		found:	78.3;	6.3; 11.5
1c	21	163-164° (c)	for $C_{23}H_{23}ClN_2$) calc.: found:	С, 72.9; H, 72.7;	6.1; N, 7.4% 6.2; 7.3
2c	34	153-154° (c)		found:	72.9;	6.2; 7.3
5c	18	146-147° (c)		found:	72.6;	6.0; 7.4
6c	27	124-125° (c)		found:	73.0;	6.2; 7.4
5d	25	118-119° (c)	for $C_{23}H_{23}FN_2$	calc.: found:	С, 76.2; H, 76.3;	6.4; N, 7.7% 6.3; 7.7
6d	35	99-100° (c)		found:	76.3;	6.4; 7.6

for $C_{24}H_{26}N_{20}$

for $C_{24}^{H}_{26}^{N}_{20}^{O}_{2}^{O}_{2}$

for $C_{22}H_{21}ClN_2O$

for $C_{22}H_{21}FN_2O$

calc.: C, 80.4; H, 7.3; N,

7.3;

7.4;

7.2;

7.2;

6.9;

7.1;

6.9;

7.1;

5.8;

5.7;

6.2;

80.6;

80.6;

80.2;

80.7;

calc.: C, 77.0; H, 7.0; N,

76.7;

77.2;

77.2

77.2;

calc.: C, 72.4; H, 5.8; N,

72.5;

72.2;

calc.: C, 75.8; H, 6.1; N,

75.7;

found:

7.8%

7.9

7.9

7.7

7.7

7.5%

7.4

7.5

7.4

7.6

7,7%

7.7

7.8

8.0%

7.9

8.2

8.1% 8.0 7.9

4d	7	104-105° (c)		found:	75.6;	6.1
3f	35	130-131° (b)	for $C_{23}H_{24}N_{20}$	calc.: C, found:	80.2; H	, 7.0; N, 7.1:
4f	5	oil		found:	80.6;	7.3;

(a) EtOH.(b) Diisopropyl ether.(c) Petroleum ether 60-80°.(d) Cyclohexane.

129-130° (d)

131-132° (d)

131-133° (c)

103-104° (a)

134-135° (c)

124-125° (c)

124-125° (c)

127-128° (c)

153-154° (b)

142-143° (b)

111-112° (c)

1e

2e

5e

6e

1f

2f

5f

6f

3c

4c

3đ

25

35

21

28

17

25

22

32

35

5

38

	R-NN NN I Phi	Ph _p Y H s H b X Me Me	н Н		R	Phoy 4 N 0 Ph p X 2, 4, 6	H H Me Mo	H J H
Compd	H-4 ^(b)	5-CH ₂ (c)	CH ₂ Vin	nylic ^(d)	6-Me ^(e)	(d) Me	R ^(e)	X/Y ^(e)
1 a	3.68	1,82	5.05	4.8	1.20	1.57	1.86	
2a	3.65	1.5-2.25	4.85	4.75	1.30	1.5	1,77	
1b	3.74	1.6-1.9	5.07	4.8	1.21	1.58	1,93	
2b	3.7	1.5-2.25	4.92	4.78	1.3	1.53	1.85	
1c	3,72	1.5-2.0	5.05	4.77	1.20	1.55	1.9	
2c	3.7	1.5-2.25	4.9	4.75	1.27	1.51	1.82	
1 e	3.78	1.85	5.15	4.8	1.23	1.6	1.97	2.08
2e	3.75	1.60-2.25	4.98	4.77	1.33	1.55	1.9	2,08
1f	3.80	1.87	5.15	4.80	1.25	1.6	1.98	3.3
2f	3.77	1.6-2.3	5.0	4.80	1.33	1.56	1.90	3.3
3c	3.68	1.3-2.0	5.15	4.85	1.21	1.65	(f)	
4c	3.6	1.3-2.1	4.95	4.76	1.3	1.52	(f)	
3d	3.65	1.4-1.9	5.10	4.80	1.18	1.60	(f)	
4d	3.58	1.3-2.0	4.88	4.70	1.26	1.46	(f)	
3f	3.83	1.83	5.14	4.82	1.23	1.65	(f)	2,20
4f	3.75	1.3-2.1	4.95	4.75	1.3	1.52	(f)	2.18
5b	3.6	1.4-1.9	5.12	4.82	1.21	1.58	1.82	
6b	3.58	1.35-2.1	4.92	4.77	1.32	1.58	1.74	
5c	3.64	1.4-1.9	5.14	4.82	1.24	1.62	1.92	
6C	3.56	1.3-2.1	4.9	4.72	1.25	1.47	1.75	
501	3.70	1.6-2.1	5,18	4.85	1.25	1.63	1.95	
6d 5-	3.60	1.2-2.1	4.9	4.73	1.27	1.5	1.8	
90 60	3.84	1.93	2.18	4.85	1.28	1,65	2.05	2.22
00 5-2	3.78	1.0-2.3	5.0	4.8	1.35	1.58	1.96	2.22
51 6f	3.02 3.73	1.93	5.2 4.95	4.00 4.75	1.30	1.53	2.04	3.42 3.35

(a) In C D. (b) Doubling doublet; triplet for 1a, e, f, 3f, 5e,f; J $_{45}$ + J $_{45}$, are always in the range 15-17 Hz. (c) Doublet for 1a, e, f, 3f, 5e,f; multiplet for the others. (d)Broad singlet. (e) Singlet. (f) Overlapped by aromatics.

G. DESIMONI et al.

Compd	Yield ^{a)}	M.p. (solv.)	Elem	ental analyses	I.R (C=O) cm ⁻¹
7a	10	146-7° (c)	for $C_{23}H_{23}N_{3}O_{3}$	calc.: C,70.9; H,5.9; N,10.8% found: 70.6: 5.7: 10.7	1709
88	20	212-3° (c)		found: 70.7; 5.8; 10.6	1716
7b	13	118-9° (c)	for C ₂₃ H ₂₃ BrN ₂ O	calc.: C,65.2; H,5.5; N, 6.6%	1711
8b	22	146-7° (c)		found: 65.2; 5.3; 6.5	1703
115	10	165-7° (c)	for C ₂₄ H ₂₃ N ₃ O	calc.: C,78.0; H,6.3; N,11.4%	1700
12Ъ	25	143-4° (c)		found: 78.2; 6.1; 11.2 found: 77.8; 6.1; 11.5	1700
7c	12	103-4° (c)	for C ₂₃ H ₂₃ ClN ₂ 0	calc.: C,72.9; H,6.1; N,7.4%	1709
80	20	151_29 (c)		found: 73.0: 6.2: 7.3	1703
110	15	172-3° (c)		found: 72.9: 6.0: 7.5	1705
12c	25	178-9° (c)		found: 72.7; 6.2; 7.4	1709
11d	10	127-8° (c)	for $C_{23}H_{23}FN_2^0$	calc.: C,76.2; H,6.4; N,7.7%	1910
				round: 76.4; 6.4; 7.6	1710
12d	17	162-3° (c)		found: 76.2; 6.5; 7.6	1710
7e	10	87-8° (c)	for $C_{24}H_{26}N_{2}^{0}$	calc.: C,80.4; H,7.3; N,7.8%	1710
80	10	122 39 (0)		found: 80.7: 7.4: 7.9	1705
110	12	152-609 (c)		found: 80.4: 7.2: 7.7	1709
120	25	144-5° (c)		found: 80.2; 7.4; 7.6	1710
7 f	15	118-9° (c)	for $C_{24}H_{26}N_{2}O_{2}$	calc.: C,77.0; H,7.0; N,7.5%	
				found: 76.8; 7.1; 7.6	1696
8f	25	124-5° (c)		found: 77.0; 7.0; 7.6	1692
11f	10	129-30° (d)		found: 76.7; 7.0; 7.5	1710
12f	20	120-21° (d)		found: 76.8; 6.9; 7.6	1710
10a	(b)	142-3° (c)	for $C_{22}H_{21}N_{3}O_{3}$	calc.: C,70.4; H,5.6; N,11.2% found: 70.3: 5.8: 11.0	1710
106	(b)	141-3° (d)	for C ₂₃ ^H 21 ^N 3 ^O	calc.: C,77.7; H,6.0; N,11.8% found: 78.0; 6.2; 11.6	1706
9c	40	153-4° (d)	for C_H_ClN_O	calc.: C.72.4; H.5.8; N.7.7%	
			22 21 2	found: 72.2; 5.9; 7.6	1710
10c	(b)	83-4° (c)		found: 72.7; 6.0; 7.6	1700
9đ	39	97-8° (c)	for C22H21FN20	calc.: C,75.8; H,6.1; N,8.0%	1695
10d	(b)	129-30° (c)		found: 75.9; 6.2; 7.9	1700
10e	(b)	130-31° (c)	for C ₂₂ H ₂₂ N ₂ O	calc.: C,80.0; H,6.7; N,8.5	
			4 44 44	found: 80.3; 6.9; 8.4	1705
9f	40	120-21° (d)	for $C_{23}H_{24}N_2O$	calc.: C,80.2, H,7.0; N,8.1	1704
				roma: 00.13 /.0; 8.0	1704

Table 6. Physical data of compounds 7-12

(a) The reported yields are from the CF COOH-catalyzed reaction of 1-aryl-4-arylidene-5 - pyrazolones and 2,3-dimethylbutadiene; the yields from the [3.1] signatropic rearrangement are nearly quantitative.

(b) Obtained from the 3.3 signatropic rearrangement only. (c) EtOH. (d) Diisopropyl ether.

Table 7. H-NMR ^(a) spectra of compounds 7-12							
	PhoX-N	H. Me 3 5 g Me PheY R	R N N	H 4 PheY O	Me Me		
Compd		3-CH ₂ ,6-CH ₂	PhpX	<u>B</u>, <u>10</u>, <u>12</u> R^(d)	x/y ^(d)		
 7a	3 20	1 1_2 9	1.40	1 86			
7a 8a	2.60	$1 1 - 2 25 3 2^{(e)}$	1.52 1.65	1.58			
0a 7h	3.28	1.1-2.9	1.45	1.90			
8b	2.65	1,1-2,25,3,25 ^(e)	1.53 1.65	1.60			
7c	3.28	1.1-2.9	1.45	1.92			
Ac.	2,63	1,1-2,25,3,25 ^(e)	1.52 1.65	1.60			
7e	3.33	1.1-2.9	1.43	1.97	1.95		
8e	2.70	1,1-2,35,3,34 ^(e)	1.55 1.67	1.65	2.05		
7f	3.37	1,1-2,9	1.45	1.98	3.22		
8f	2.70	$1.1-2.25$, $3.32^{(e)}$	1.55 1.66	1.66	3.25		
9a	3.05	1.0-2.75	1.43	(f)			
10a	2,55	1.0-2.2.2.95 ^(e)	1.50 1.62	6,65			
9b	3.02	1.0-2.75	1.43	(f)			
1 0b	2.55	1,1-2,25, 3,0 ^(e)	1.52 1.64	6,65			
90	3.07	1.1-2.8	1.43	(f)	~~		
10c	2.60	1.1-2.25.3.08 ^(e)	1.50 1.62	6.67			
9d	3.13	1.1-2.9	1.45	(f)			
10d	2,62	1.1-2.25.3.10 ^(e)	1.50 1.62	(f)			
9e	3.21	1.1-2.9	1.45	(f)			
10e	2,72	1.1~2.25.3.25 ^(e)	1.50 1.62	6.72			
9f	3.25	1.1-2.9	1.45	(f)	1.92		
9g	3,25	1.1-2.9	1.47	(f)	3.15		
11b	3,12	1.1-2.9	1.40	1.82			
12b	2,45	1.1-2.2,3.07 ^(e)	1.50 1.62	1.50			
11c	3,20	1.1-2.9	1.43	1,86			
12c	2,55	1.2-2.25,3.20 ^(e)	1.52 1.66	1.57			
11d	3,23	1.1-2.9	1.45	1.90			
12d	2,58	1,2~2,25,3.35 ^(e)	1.54 1.68	1.60			
11e	3.35	1.1-2.9	1.45	1.92	1.98		
12e	2.70	1.2~2.25,3.35 ^(e)	1.55 1.65	1.65	1.92		
11f	3.35	1.1-2.9	1.45	1.98	3.15		
12f	2.70	1.2~2.3,3.33 ^(e)	1.55 1.67	1.67	3.15		

(a) In C D.(b) Doubling doublet; J + J are always in the range 15.5-18.5 Hz.(c) Broad singlet(s); broad triplet for **9a-d**. d) Singlet. (e) 1H, broad triplet.(f) Overlapped by aromatics.

Acknowledgement - The authors are grateful to Dr. Lucia Zetta (CNR Milano - Italy) for NOE experiments and to National Research Council (CNR) and M.P.I. for financial support.

REFERENCES AND NOTES

- 1 For a review on the applications of the Claisen rearrangement to the synthesis of natural products see: Desimoni, G.; Tacconi, G.; Barco, A.; Pollini, G.P. "Natural Products Synthesis through Pericyclic Reactions" A.C.S. Monograph 180, American Chemical Society, Washington D.C. **1983**, pp. 289-319 and references therein.
- 2 White, W.N.; Wolfarth, E.F. J.Org. Chem. 1970, 35, 2196, 3585.
- 3 Coates, R.M.; Rogers, B.B.; Hobbs, S.J.; Peck, D.R.; Curran, D.P. J.Am.Chem.Soc. 1987, 109, 1160.
- 4 Gajewski, J.J.; Jurayj, J.; Kimbrough, D.R.; Gaude, M.E.; Ganem, B.; Carpenter, B.K. J.Am.Chem.Soc. 1987, 109, 1170.
- 5 Brandes, E.; Grieco, P.A.; Gajewski, J.J. J.Org.Chem. 1989, 54, 515.
- 6 Burrows, C.J.; Carpenter, B.K. J.Am.Chem.Soc. 1981, 103, 6983.
- 7 Gajewski, J.J.; Conrad, N.D. J.Am.Chem.Soc. 1979, 101, 6693.
- 8 a) Dewar, M.J.S.; Healy, E.F. J.Am.Chem.Soc. 1984, <u>106</u>, 7127. b) Dewar, M.J.S.; Jie, C. J.Am.Chem.Soc. 1989, <u>111</u>, 511.
- 9 Burrows, C.J.; Carpenter, B.K. J.Am.Chem.Soc. 1981, 103, 6984.
- 10 White, W.N.; Fife, W.K. J.Am.Chem.Soc. 1961, 83, 3846.
- 11 Dewar, M.J.S.; Nahlowsky, B.D. J.Am.Chem.Soc. 1974, 96, 460.
- 12 Brugnolotti, M.; Corsico Coda, A.; Desimoni, G.; Faita, G.; Gamba Invernizzi, A.; Righetti, P.P; Tacconi, G. Tetrahedron **1988**, <u>44</u>, 5229.
- 13 All products are obviously racemic mixtures.
- 14 When H-4 of 1d and 2d were irradiated, only the 6-methyl group of the former gave a positive NOE enhancement, thus confirming the assigned configuration.
- 15 Tai, J.C.; Allinger, N.L. J.Am.Chem.Soc. 1988, 110, 2050.
- 16 The axial orientation of the phenyl group was found to be disfavoured over the equatorial one in a 2-phenyl-1,3-dioxan derivative as the result of both a small entalpy contribution and a large entropy contribution ($\Delta S^\circ = +3.9 \pm 0.8 \text{ e.u}$).¹⁷
- 17 Bailey, W.F.; Connon, H.; Eliel, E.L.; Wiberg, K.B. J.Am.Chem.Soc. 1978, 100, 2202.
- 18 The 4-phenyl group has a different orientation in the B and C conformations calculated for 1d and 2d, respectively. In fact, while in B the dihedral angle H4-C4-C1"-C2" is 50°, in C it is -13°.
- 19 (R,S) and (R,R) 1,3,4-triphenyl-6-isopropenyl-6-methyldihydropyran [2,3-c] pyrazoles have been synthesized and their rearrangement rates were determined at 125° C in C D . The k(s⁻¹) were 1.07 \pm 0.07 x 10⁻⁵ and 4.01 \pm 0.09 x 10⁻⁵ respectively. If the former value is compared with k values of 1d and 3e, rate lies in the order: 3-H > 3-Me > 3-Ph. If the latter value is compared with k values of 2d and 4e, rate lies in the order: 3-Ph > 3-Ph 3-Me > 3-H. In both cases the new data support the rationalization proposed in the text.
- 20 Desimoni, G.; Gamba, A.; Righetti, P.P; Tacconi, G. Gazz.Chim.Ital. 1972, 102, 491.
- 21 Desimoni, G.; Gamba, A.; Righetti, P.P.; Tacconi, G.; Faucitano, A. J.Chem.Soc. Perkin Trans. II **1977** 1725.
- 22 Mamaev, V.P.; Mikhaleva, M.A. Chem.Heterocycl.Compd. 1967, 3, 843.
- 23 Chattaway, F.D.; Strouts, C.R.N. J.Chem.Soc. 1924, 125, 2423.
- 24 Michaelis, A.; Schwabe, G. Ber. Dtsch.Chem.Ges. 1900, 33, 2068.
- 25 Ege, S.N.; Adams, A.D.; Gess, E.J; Ragone, K.S.; Kober, B.J.; Lampert, M.B.; Umrigar, P.; Lankin, D.C.; Griffin, G.W. J.Chem.Soc., Perkin Trans. 1 1983, 325.